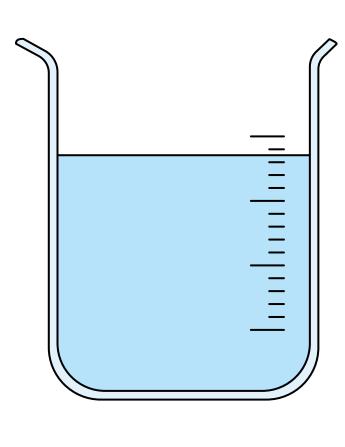
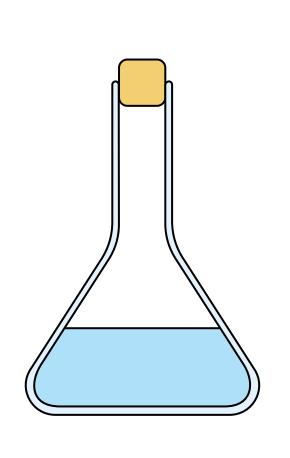


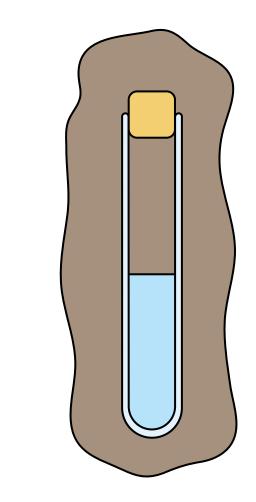
TERMODINAMICA

1.º Bach




La TERMODINÁMICA es una rama de la física que se ocupa del calor, el trabajo y la temperatura, y su relación con la energía, la entropía y las propiedades físicas de la materia y la radiación.

Sistemas termodināmicos


Un **sistema termodinámico** es una porción de materia delimitada para su estudio. En relación con el **entorno**, los sistemas termodinámicos se clasifican en:

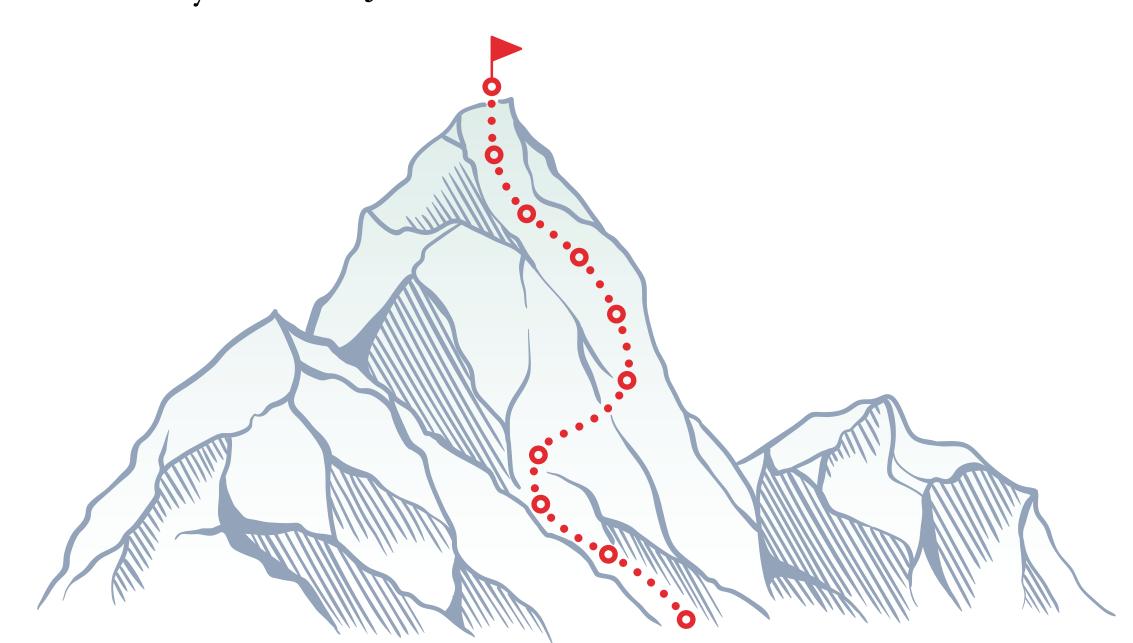
sistema abierto intercambia materia y energía con el entorno

sistema cerrado intercambia energía pero no materia con el entorno

sistema aislado no intercambia ni materia ni energía con el entorno

Adaptada de https://www.nagwa.com/en/explainers/259104205403/.

Variables termodinámicas

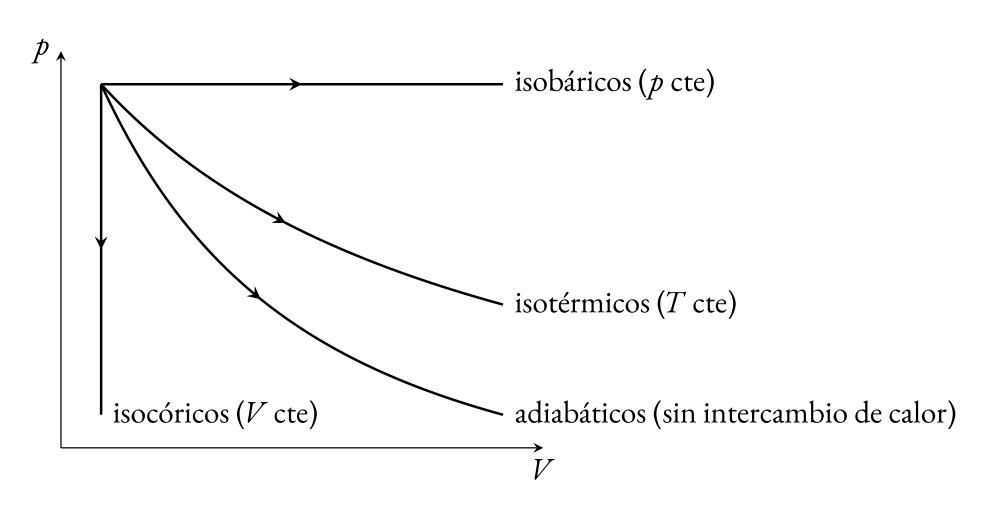

Las variables termodinámicas son las propiedades que definen el estado de un sistema termodinámico. Pueden ser:

Intensivas No dependen de la cantidad de materia (temperatura, presión, densidad, concentración, etc.).

Extensivas Dependen de la cantidad de materia (masa, volumen, energía interna, entalpía, entropía, etc.).

Funciones de estado

Algunas variables termodinámicas reciben el nombre de Funciones de Estado porque su valor depende únicamente de los estados inicial y final del sistema y no del camino seguido para pasar de un estado a otro. Son funciones de Estado el volumen, la presión, la temperatura, la energía interna, la entalpía, la entropía y la energía de Gibbs. El calor y el trabajo no son funciones de Estado.



METÁFORA ÚTIL: la altura de una montaña (función de estado) depende de la base (estado inicial) y la cima (estado final), no de la ruta que tomes. El esfuerzo para subir (trabajo, calor) depende de la senda que sigas. Fuente: https://depositphotos.com/vector/

mountain-climbing-route-top-rock-red-flag-peak-business-journey-785336924.html.

Procesos termodinámicos

Un **proceso termodinámico** es la **transformación** que experimenta un sistema termodinámico al pasar de un estado inicial a un estado final. Los procesos termodinámicos pueden ser **reversibles** o **irreversibles**, dependiendo de si es posible revertir el proceso sin dejar cambios en el entorno. Según las **condiciones** en las que se realicen, tenemos procesos:

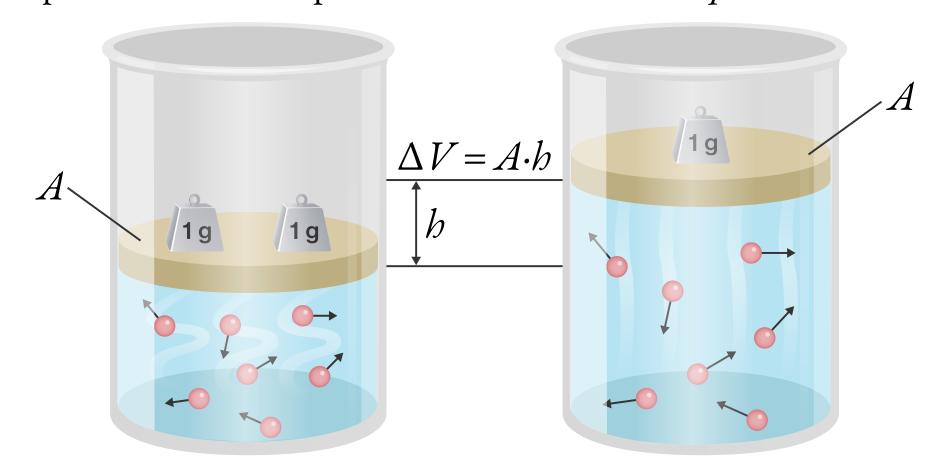
Intercambios de energía entre sistemas: calor y trabajo

La **energía** se puede **intercambiar/transferir** mediante **calor** o **trabajo**. En el SI se mide en julios (J), aunque por razones históricas en química es habitual medirla en calorías (1 cal = 4.18 J). Otra unidad habitual es la atmósfera-litro (1 atm L = 101.3 J).

Calor Q

El CALOR se transfiere entre dos cuerpos que tienen DIFERENTE TEMPERATURA y siempre fluye del cuerpo con mayor temperatura al de menor temperatura, hasta que ambos alcanzan el EQUILIBRIO TÉRMICO. El CALOR TRANSFERIDO, Q, viene dado por:

SIN CAMBIO DE ESTADO
$$Q = mc\Delta T$$


CON CAMBIO DE ESTADO Q = mL

donde m es la masa del cuerpo, c el calor específico, ΔT la variación de temperatura y L el calor latente (de fusión o de vaporización).

Trabajo W

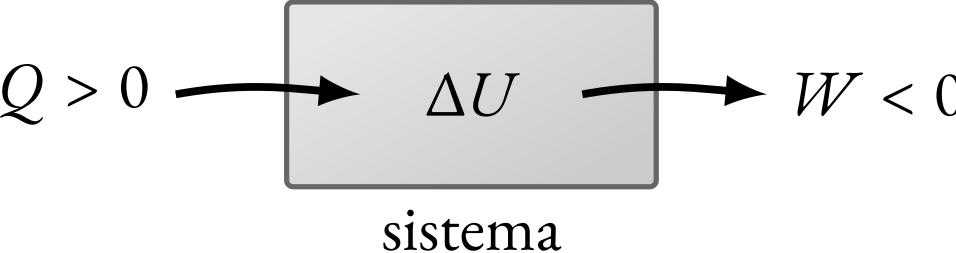
El TRABAJO se transfiere cuando entre dos cuerpos se realizan FUERZAS que provocan desplazamientos o cambios en sus dimensiones.

Trabajo de expansión a presión constante Supongamos que el gas que está dentro del cilindro se expande contra una presión exterior constante *p*:

Traducida y adaptada de https://www.coursehero.com/sg/general-chemistry/thermodynamic-work/.

El trabajo realizado por el gas puede expresarse como:

$$W = \vec{F} \cdot \Delta \vec{r} = -p \cdot A \cdot h = -p \cdot \Delta V$$


Primer principio de la termodinámica

Todo sistema, a una determinada presión y temperatura, posee una **energía interna** U, que es la suma de la energía cinética de todas sus partículas y de la energía potencial debida a las interacciones entre ellas. El **primer principio de la termodinámica** establece que:

"La variación de la energía interna de un sistema es igual a la suma del calor absorbido por el sistema y del trabajo realizado sobre él."

$$\Delta U = Q + W$$

$$\Delta U = U_{\text{productos}} - U_{\text{reactivos}}$$

Según el **criterio IUPAC**, el **calor** Q es **positivo** cuando es **absorbido** por el sistema y **negativo** cuando es **cedido** por el sistema. El **trabajo** W es **positivo** cuando es **realizado sobre** el sistema y **negativo** cuando es **realizado por** el sistema. Adaptada de https://tikz.net/heat_baths/.

En función de las **condiciones** en las que se lleva a cabo el proceso, el **primer principio de la termodinámica** puede tomar **distintas formas**:

Proceso isocórico (V cte) $\Delta U = Q_V$	Proceso isobárico (p cte) $\Delta U = Q_p - p\Delta V$
Proceso isotermo (T cte)	Proceso adiabático ($Q = 0$)
$\Delta U = 0$	$\Delta U = W = -p\Delta V$

Transferencias de calor en procesos químicos

A volumen constante

Tiene lugar en los procesos isocóricos. En este caso, el trabajo realizado es nulo (W=0) y la variación de energía interna se iguala al calor transferido:

$$\Delta U = Q_V$$

A presión constante: ENTALPÍA

Tiene lugar en los procesos isobáricos (los más habituales con reacciones químicas). En este caso, el trabajo realizado es $W=-p\Delta V$ y la variación de energía interna es:

$$\Delta U = Q_p - p\Delta V \Longrightarrow Q_p = \Delta U + p\Delta V$$

Si definimos una nueva función de estado, la ENTALPÍA H, como:

$$H = U + pV$$
,

podemos escribir:

$$Q_p = \Delta H = \Delta U + p\Delta V = Q_V + p\Delta V$$

Para un GAS IDEAL a TEMPERATURA CONSTANTE:

$$pV = nRT \implies p\Delta V = \Delta nRT$$
,

por lo que:

$$Q_p = Q_V + \Delta nRT$$

Si no hay variación de moles (gaseosos), $\Delta n = 0 \Rightarrow Q_p = Q_V$.